Data collection	
Stoe Siemens AED-2	6280 reflections with
diffractometer	$I > 2\sigma(I)$
ω/θ scans	$R_{\rm int} = 0.058$
Absorption correction:	$\theta_{\rm max} = 25.01^{\circ}$
ψ scans (XEMP; Siemens	$h = 0 \rightarrow 16$
1990a)	$k = -15 \rightarrow 1$
$T_{\rm min} = 0.142, T_{\rm max} = 0.275$	$l = -29 \rightarrow 29$
8726 measured reflections	3 standard reflections
8023 independent reflections	frequency: 60 min

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.100$ S = 1.0488021 reflections 547 parameters H atoms: see below $w = 1/[\sigma^2(F_o^2) + (0.0417P)^2 + 26.1665P]$ where $P = (F_o^2 + 2F_c^2)/3$ $h = 0 \rightarrow 16$ $k = -15 \rightarrow 1$ $l = -29 \rightarrow 29$ 3 standard reflections frequency: 60 min intensity decay: none $(\Delta/\sigma)_{max} = -0.001$ $\Delta\rho_{max} = 2.322 \text{ e Å}^{-3}$

 $\Delta \rho_{max} = 2.322 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -2.049 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters (Å, °)

	-	-	
Au1—P1	2.264 (2)	S1-C2	1.756 (8)
Au1—S3	2.327 (2)	S2—C1	1.739 (9)
Aul···Au2	3.2217 (8)	S2—C3	1.754 (8)
Au2—P2	2.265 (2)	\$3—C2	1.739 (9)
Au2—S4	2.331 (2)	S4—C3	1.750 (8)
SI—CI	1.722 (11)	S5-C1	1.649 (9)
P1—Au1—S3	160.14 (8)	C2-S3-Aul	107.2 (3)
P2 - Au2 - S4	174.89(8)	C3-S4-Au2	102.6 (3)

The significant residual electron density is in the heavy-atom region; the distance of the maximum peak, $2.322 \text{ e} \text{ Å}^{-3}$, to the nearest atom (Au2) is 1.11 Å. H atoms of the methyl groups were refined as rigid groups; others were included using a riding model.

Data collection: DIF4 (Stoe, 1987a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe, 1987b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: XP (Siemens, 1990b). Software used to prepare material for publication: SHELXL93.

Financial support from the Dirección General de Investigación Técnica (PB95-0140) is acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1240). Services for accessing these data are described at the back of the journal.

References

Angelici, R. J. & Bush, R. C. (1988). Inorg. Chem. 27, 681-686.

Blower, P. J. & Dilworth, J. R. (1987). Coord. Chem. Rev. 76, 121-185.

- Cerrada, E., Jones, P. G., Laguna, A. & Laguna, M. (1996). Inorg. Chem. 35, 2995–3000.
- Dance, J. G. (1986). Polyhedron, 5, 1037-1104.
- Dávila, R. M., Elduque, A., Grant, T., Staples, R. J. & Fackler, J. P. Jr (1993). *Inorg. Chem.* 32, 1749–1755.
- Dávila, R. M., Staples, R. J., Elduque, A., Hartlass, M. M., Kyle, L. & Fackler, J. P. Jr (1994). *Inorg. Chem.* 33, 5940–5945.

© 1998 International Union of Crystallography Printed in Great Britain – all rights reserved

- Gimeno, M. C., Jones, P. G., Laguna, A., Laguna, M. & Terroba, R. (1994). Inorg. Chem. 33, 3932-3938.
 Hartley, F. R. (1990). Editor. The Chemistry of Organophosphorous Compounds, Vol. 1, p. 478. Chichester: John Wiley.
 Holm, R. H., Ciurli, S. & Weigel, J. A. (1990). Prog. Inorg. Chem. 38, 1-74.
 Jones, P. G. (1981). Gold Bull. 14, 102-118.
 Kuchn, C. G. & Isied, S. S. (1980). Prog. Inorg. Chem. 27, 153-218.
 Melnik, M. & Parish, R. (1986). Coord. Chem. Rev. 70, 157-257.
 Mingos, D. M. P. (1984). Gold Bull. 17, 5-12.
 Nakamoto, N., Hiller, W. & Schmidbaur, H. (1993). Chem. Ber. 126, 605-610.
 Pyykkö, P. (1988). Chem. Rev. 88, 563-594.
 Schmidbaur, H. (1990). Gold Bull. 23, 11-21.
- Schmidbaur, H., Dziwok, A., Grohmann, A. & Müller, G. (1989). Chem. Ber. **122**, 893–895.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1990a). XEMP. Empirical Absorption Correction Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1990b). XP. Molecular Graphics Program. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Stoe (1987a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe (1987b). REDU4. Data Reduction Routine. Version 7.03. Stoe & Cie, Darmstadt, Germany.
- Tolman, C. A. (1977). Coord. Chem. Rev. 77, 313-346.
- Usón, R. & Laguna, A. (1986). Coord. Chem. Rev. 70, 1-50.
- Wright, J. G., Natan, M. J., MacDonnell, F. M., Ralston, D. M. & O'Halloran, T. V. (1990). Prog. Inorg. Chem. 38, 323.

Acta Cryst. (1998). C54, 203-205

μ -[7,8-Bis(diphenylphosphino)-7,8-dicarbanido-undecaborato-1 κP ,2 $\kappa P'$](pentafluorophenyl-1 κC)(triphenylphosphine-2 κP)digold(I) Dichloromethane Solvate

Olga Crespo, M. Concepción Gimeno, Antonio Laguna and M. Dolores Villacampa

Departamento de Química Inorgánica, Universidad de Zaragoza–CSIC, Instituto de Ciencia de Materiales de Aragón, 50009 Zaragoza, Spain. E-mail: dvilla@posta. unizar.es

(Received 14 July 1997; accepted 16 October 1997)

Abstract

The title compound, $[Au_2(C_{26}H_{30}B_9P_2)(C_6F_5)(C_{18}H_{15}-P)].CH_2Cl_2$, has a dinuclear structure with the diphosphinocarbaborane moiety bridging the two Au atoms. There is a short intramolecular Au···Au contact of 2.9885 (8) Å. The linear coordination at the Au¹ atoms is highly distorted: P—Au—C 166.6 (2) and P—Au—P 164.69 (7)°. The open B_3C_2 face contains one bridging (B—H—B) H atom.

Comment

We are currently studying the coordination behaviour of the 7, 8-bis(diphenylphosphino)-7, 8-dicarba-*nido*undecaborate anion (Crespo, Gimeno, Laguna & Jones, 1996). We have observed that the anionic diphosphine coordinates to gold(I) centres as a chelate, thus yielding three- and four-coordinated derivatives.

We report here the structure of the neutral title complex, (I), which crystallizes as a dichloromethane solvate. The 7,8-bis(diphenylphosphino)-7,8-dicarba-*nido*undecaborate anion acts as a P,P'-bidentate bridging ligand, being bonded to two different Au—L groups. This represents the first example of a structure where the anionic diphosphine acts as a bridging ligand.

The molecule shows a distorted linear coordination at the Au¹ atoms, with a P—Au—P angle of 164.69 (7)° and a P-Au-C angle of 166.6(2)°, associated with a short Au. Au contact of 2.9885 (8) Å. This weak metal-metal interaction, termed 'aurophilic attraction', is interesting from a theoretical viewpoint, because the classical theory of chemical bonding does not provide a satisfactory explanation for it. Only when considered as a correlation effect, strengthened by relativistic effects, can this phenomenon be accounted for by theoretical studies (Kaltsoyannis, 1997; Pyykkö, 1997; Pyykkö, Runeberg & Mendizabal, 1997; Pyykkö & Mendizabal, 1997). These Au...Au contacts are comparable in strength to typical hydrogen bonds, associated with a bond energy of the order of 5-10 kcal mol⁻¹ (Schmidbaur et al., 1988; Narayanaswamy et al., 1993). Furthermore, Hawthorne and co-workers (Harwell et al., 1996) calculated, by a variable-temperature NMR investigation, that the energy barrier separating the gold-gold bonded state and the non-bonded state in a digold-*closo*-carborane derivative is 11 ± 1 kcal mol⁻¹.

The Aul atom is bonded to a P and a C atom (Fig. 1), with Au—P and Au—C bond distances of 2.300 (2) and 2.068 (8) Å, respectively; similar values were observed in related complexes such as $[Au_2(dppm)(C_6F_5)_2]$ [dppm is bis(diphenylphosphino)methane] [Au-P =2.288 (3) and 2.279 (3) Å, and Au—C = 2.063 (12) and 2.058 (12) Å; Jones & Thöne, 1992] or $[Au(C_6F_5)-(PPh_3)]$ [Au—P = 2.27 (1) Å and Au—C = 2.07 (2) Å; Baker *et al.*, 1972].

The Au2 atom is bonded to two P atoms, with Au—P bond distances of 2.326(2) and 2.312(2)Å; these values compare well with those found in

Fig. 1. The molecular structure of the title compound (solvent omitted). All H atoms, except the bridging open-face H atom, have been omitted.

other P—Au^I—P derivatives such as $[Au(PPh_3)_2](BF_4)$ [2.321 (3), 2.322 (3) Å; Wang, 1996] or $[Au_2(dppm)_2]$ -(BF₄)₂ [2.311 (3) and 2.310 (3) Å; Porter *et al.*, 1989].

The Au—P(diphosphine) bond distances differ slightly; the bond *trans* to the PPh₃ group is longer, 2.326 (2) Å, probably as a consequence of the major *trans* influence of the PPh₃ moiety.

Phenyl and closed-faced carborane H atoms were geometrically set with a riding model, but the four open-face carborane H atoms were located in difference syntheses and refined using B-H distance restraints. The extra H atom, H10b, in the pentagonal C_2B_3 open face is strongly bonded to the central B atom [B10-H10b 1.00 (4) Å], but it can be considered as semibridging B11 [B11—H10b 1.50 (8) Å]. This distance is, however, longer than in other derivatives such as $[AuCl_2{(PPh_2)_2C_2B_9H_{10}}]$ [1.37 (7) Å; Jones, Villacampa et al., 1997] or $[Au\{(PPh_2)_2C_2B_9H_{10}\}\{(PPh_2)_2 C_2B_{10}H_{10}$]ClO₄ [1.35 Å; Crespo *et al.*, 1997]. As a consequence of the presence of heavy atoms, these values are imprecise, although we have observed a similar arrangement of H atoms in other complexes of the openface carborane ligand (Crespo, Gimeno, Jones & Laguna, 1996). We have also determined the structure of the compound $[C_2B_9H_{10}(SC_5H_4NH)_2](CF_3SO_3)$, where the H atoms were freely refined, clearly showing the bridging nature of this H atom [B-H distances 1.12(3) and 1.39 (3) Å; Jones, Crespo et al., 1997].

Experimental

To a solution of $[Au\{(PPh_2)_2C_2B_9H_{10}\}(PPh_3)]$ (Crespo, Gimeno, Laguna & Jones, 1996) (0.096 g, 0.1 mmol) in dichloromethane, $[Au(C_6F_5)(C_4H_8S)]$ (0.0452 g, 0.1 mmol) was added. The solution was stirred for 1 h. Concentration of the solution to *ca* 5 ml and addition of *n*-hexane afforded a yellow solid (yield 65%). Analysis calculated for $C_{50}H_{45}Au_2B_9F_5P_3$: C 43.05, H 3.25%; found: C 43.4, H 3.7%; $A_M 5 \ \Omega^{-1} \ \text{cm}^2 \ \text{mol}^{-1}.$ NMR data: ¹H, $\delta = -2.0 \ (br, 1H, BHB), 7.3-8 \ (m, 20H, Ph) p.p.m; ³¹P{¹H} (ABX system), <math>\delta_A = 40.1, \delta_B = 54.2, \delta_X = 50.3 \text{ p.p.m.}, J(AB) = 306 \text{ Hz}, J(AX) = 56.2 \text{ Hz}, J(BX) = 0.$ ¹⁹F, $\delta = -114.0 \ (m, 2F, o-F), -158.2 \ [t, 1F, p-F, J(FF) = 20.4 \text{ Hz}], -161.3 \ (m, 2F, m-F).$ Mass spectrum (LSIMS+): $m/z = 1326 \ ([M]^+, 35\%), 961 \ ([M - AuC_6F_5]^+, 40\%), 459 \ ([AuPPh_3]^+, 100\%).$ Single crystals were obtained from an *n*-heptane–dichloromethane solution.

Crystal data

 $[Au_{2}(C_{26}H_{30}B_{9}P_{2})(C_{6}F_{5})-(C_{18}H_{15}P)].CH_{2}Cl_{2}$ $M_{r} = 1409.92$ Monoclinic $P2_{1}/c$ a = 12.360 (2) Å b = 17.042 (3) Å c = 25.080 (5) Å $\beta = 92.93 (3)^{\circ}$ $V = 5275.9 (16) Å^{3}$ Z = 4 $D_{x} = 1.775 \text{ Mg m}^{-3}$ D_{m} not measured

Data collection

Siemens Stoe AED-2 diffractometer ω/θ scans Absorption correction: ψ scans (*XEMP*; Siemens, 1990*a*) $T_{min} = 0.458$, $T_{max} = 0.961$ 8846 measured reflections 8287 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.108$ S = 1.0408285 reflections 665 parameters H atoms: H9, H10, H10b and H11 refined with distance restraints, others riding

 $0.61 \times 0.57 \times 0.22$ mm Colourless 6670 reflections with $I > 2\sigma(I)$ $R_{e} = 0.036$

Mo $K\alpha$ radiation

Cell parameters from 44

 $\lambda = 0.71073 \text{ Å}$

reflections $\theta = 15 - 19^{\circ}$

 $\mu = 5.801 \text{ mm}^{-1}$

T = 173 K

Tablet

 $R_{int} = 0.036$ $\theta_{max} = 24.04^{\circ}$ $h = 0 \rightarrow 14$ $k = -19 \rightarrow 1$ $l = -28 \rightarrow 28$ 3 standard reflections frequency: 60 min intensity decay: none

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0667P)^{2} + 7.0867P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 2.57 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -1.83 \text{ e} \text{ Å}^{-3}$ Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters (Å, °)

Au1-C81	2.068 (8)	P2-C8	1.841 (8)
Aul—Pl	2.300 (2)	B9—C8	1.619 (12)
Au1—Au2	2.9885 (8)	B9—B10	1.817 (13)
Au2—P3	2.312 (2)	B10—B11	1.824 (14)
Au2—P2	2.326 (2)	B11—C7	1.623 (12)
P1—C7	1.836 (8)	C7—C8	1.611 (10)
C81—Au1—PI	166.6 (2)	C7—P1—Au1	119.3 (2)
P3—Au2—P2	164.69 (7)	C41—P2—C31	102.8 (4)
C11—P1—C21	103.3 (3)	C41—P2—C8	108.3 (3)
C11—P1—C7	105.3 (4)	C31—P2—C8	107.1 (4)
C21—P1—C7	110.3 (3)	C41—P2—Au2	119.1 (2)
C11—P1—Au1	106.2 (3)	C31-P2-Au2	107.8 (3)
C21P1Au1	111.0 (2)	C8—P2—Au2	110.9 (2)

The significant residual electron density is in the heavy-atom region; the distance of the maximum peak, $2.570 \text{ e} \text{ Å}^{-3}$, to

the nearest atom (Au2) is 0.89 Å. All non-H atoms were refined anisotropically. Most H atoms were refined using a riding model; those of the carbaborane open face were located in difference syntheses and refined with B—H distance restraints. A total of 82 restraints were applied, involving local phenyl and pentafluorophenyl ring symmetry (*FLAT/SAME* in *SHELXL*93; Sheldrick, 1993) in addition to the B—H restraints.

Data collection: *DIF4* (Stoe & Cie, 1988a). Cell refinement: *DIF4*. Data reduction: *REDU4* (Stoe & Cie, 1988b). Program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL*93. Molecular graphics: *XP* (Siemens, 1990b). Software used to prepare material for publication: *SHELXL*93.

We thank the Dirección General de Investigación Científica y Técnica (No. PB94-0079).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1248). Services for accessing these data are described at the back of the journal. A displacement ellipsoid plot ot the title compound has also been deposited.

References

- Baker, R. W., Pauling, P. J., Ramsay, W. & Forster, R. (1972). J. Chem. Soc. Dalton Trans. pp. 2264–2266.
- Crespo, O., Gimeno, M. C., Jones, P. G. & Laguna, A. (1996). J. Chem. Soc. Dalton Trans. pp. 4583-4588.
- Crespo, O., Gimeno, M. C., Jones, P. G., Laguna, A. & Villacampa, M. D. (1997). Angew. Chem. 36, 993–995.
- Crespo, O., Gimeno, M. C., Laguna, A. & Jones, P. G. (1996). Inorg. Chem. 35, 1361–1366.
- Harwell, D. E., Mortimer, M. D., Knobler, C. B., Anet, F. A. L. & Hawthorne, M. F. (1996). J. Am. Chem. Soc. 118, 2679–2685.
- Jones, P. G., Crespo, O., Gimeno, M. C. & Laguna, A. (1997). Acta Cryst. C53, 767–768.
- Jones, P. G. & Thöne, C. (1992). Acta Cryst. C48, 1312-1314.
- Jones, P. G., Villacampa, M. D., Crespo, O., Gimeno, M. C. & Laguna, A. (1997). Acta Cryst. C53, 570–572.
- Kaltsoyannis, N. (1997). J. Chem. Soc. Dalton Trans. pp. 1-11.
- Narayanaswamy, R., Young, M. A., Parkhurst, E., Ouellette, M., Kerr, M. E., Ho, D. M., Elder, R. C., Bruce, A. E. & Bruce, M. R. M. (1993). *Inorg. Chem.* 32, 2506–2517.
- Porter, L. C., Khan, N. I., King, C. & Fackler, J. P. Jr (1989). Acta Cryst. C45, 947–949.
- Pyykkö, P. (1997). Chem. Rev. 97, 601-636.
- Pyykkö, P. & Mendizabal, F. (1997). Chem. Eur. J. 3, 1458-1465.
- Pyykkö, P., Runeberg, N. & Mendizabal, F. (1997). Chem. Eur. J. 3, 1451–1457.
- Schmidbaur, H., Graf, W. & Müller, G. (1988). Angew. Chem. Int. Ed. Engl. 27, 417–419.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1990a). XEMP. Empirical Absorption Correction Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1990b). XP. Molecular Graphics Program. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). REDU4. Data Reduction Program. Version 7.03. Stoe & Cie, Darmstadt, Germany.
- Wang, J. (1996). Acta Cryst. C52, 611-613.